Effects of apolipoprotein E on the human immunodeficiency virus protein Tat in neuronal cultures and synaptosomes.

نویسندگان

  • Chava B Pocernich
  • Rukhsana Sultana
  • Eugene Hone
  • Jadwiga Turchan
  • Ralph N Martins
  • Vittorio Calabrese
  • Avindra Nath
  • D Allan Butterfield
چکیده

Human immunodeficiency virus type 1 (HIV-1)-associated dementia is observed in 20-30% of patients with acquired immunodeficiency syndrome (AIDS). The epsilon4 allele of the apolipoprotein E (APOE) gene currently is thought to play a role as a risk factor for the development of HIV dementia. The HIV protein Tat is neurotoxic and binds to the same receptor as apoE, the low-density lipoprotein receptor-related protein (LRP). In this study, we investigated the role apoE plays in Tat toxicity. Synaptosomes from wild-type mice treated with Tat had increased reactive oxygen species (ROS), increased lipid and protein oxidation, and decreased mitochondrial membrane potential. Synaptosomes from APOE-knockout mice also had increased ROS, increased protein oxidation, and decreased mitochondrial membrane potential, but to a significantly lesser degree. Treatment of synaptosomes with heparinase and Tat increased Tat-induced oxidative stress, consistent with the notion of Tat requiring interaction with neuronal membranes to induce oxidative damage. Human lipidated apoE3 greatly protected neurons from Tat-induced toxicity, whereas human lipidated apoE4 showed no protection. We demonstrated that human apoE3 has antioxidant properties against Tat-induced toxicity. Taken together, the data suggest that murine apoE and human apoE4 act similarly and do not protect the cell from Tat-induced toxicity. This would allow excess Tat to remain outside the cell and interact with synaptosomal membranes, leading to oxidative stress and neurotoxicity, which could contribute to dementia associated with HIV. We show that the antioxidant properties of apoE3 greatly outweigh the competition for clearance in deterring Tat-induced oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53

Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellu‌lar genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...

متن کامل

Designing and analyzing the structure of Tat-BoNT/A(1-448) fusion protein: An in silico approach

Clostridium botulinum type A (BoNT/A) produces a neurotoxin recently found to be useful as an injectable drug for the treatment of abnormal muscle contractions. The catalytic domain of this toxin which is responsible for the main toxin activity is a zinc metalloprotease that inhibits the release of neurotransmitter mediators in neuromuscular junctions. A cell penetrating cationic peptide, Tat, ...

متن کامل

Human immunodeficiency virus type 1 Tat activity in human neuronal cells: uptake and trans-activation.

Neurological dysfunction in AIDS occurs in the absence of productive infection of neurons, and may involve modulation of neuronal cell function by viral or cellular products released from surrounding infected cells. The human immunodeficiency virus type 1 (HIV-1) trans-activator protein Tat may be one such factor, as it can act as a neurotoxin, induces marked morphological changes in neurons an...

متن کامل

Effects of Sodium Valproate on the Replication of Herpes Simplex Virus Type 1: An in Vitro Study

Background: Sodium valproate, an anticonvulsant drug, is reported to stimulate Human Immunodeficiency Virus type 1 and Human cytomegalovirus replication. Since epileptic patients undergoing sodium valproate therapy may suffer from various virus infections, the effect of this drug on replication of viruses especially those affecting neuronal tissues such as Herpes simplex virus type 1 is worthy ...

متن کامل

The human immunodeficiency virus-1 protein transactivator of transcription up-regulates N-methyl-D-aspartate receptor function by acting at metabotropic glutamate receptor 1 receptors coexisting on human and rat brain noradrenergic neurones.

We investigated the effects of the human immunodeficiency virus-1 transactivator of transcription (Tat) on the release of norepinephrine (NE) from human and rat brain synaptosomes. Tat could not evoke directly release of [3H]NE. In the presence of Tat (1 nM), N-methyl-D-aspartate (NMDA) concentrations unable to release (human synaptosomes) or slightly releasing (rat synaptosomes) [3H]NE became ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 77 4  شماره 

صفحات  -

تاریخ انتشار 2004